1872年(C.)F.克莱因在埃尔朗根大学的教授就职演讲时,提出题为《关于近代几何研究的比较考察》的论文,论述了变换群在几何中的主导作用,把到当时为止已发现的所有几何统一在变换群论观点之下,明确地给出了几何的一种新定义,把几何定义为一个变换群之下的不变性质。这种观点突出了变换群在研讨几何中的地位,后来简称为《埃尔朗根纲领》。
给定任意几何对象的集合M,约定把集合M叫做空间。把M中的每个几何对象(或称为元素)变到另一个几何对象上的过程称为M上的一个几何变换,简称变换。以α表示某一几何对象或由许多对象所构成的图形,以T 表示一个几何变换,则在T之下把α变到另一个对象或图形b,记作T(α)=b,b称为α的像,α称为b的像源。
另取一个变换S作用到b上,设S(b)=c,若这两个变换连续作用,则α变到с,所以α变到с的过程也是一个变换,记作P,即P(α)=с。P称为S和T的乘积,记作P=ST。变换乘积的次序一般是不可交换的,即ST≠TS。
若有三个变换T、S、R,先作用T,其次作用S,最后作用R,其结果是RST,这个记号表示作用的次序是从右边到左边。变换乘积的结合律是成立的:(RS)T=R(ST)=RST。若变换T,使得每个元素b都是惟一的某个元素α的像,则称T为一对一的变换,这时,T有确定的逆变换,记作T-1,T与T-1的乘积保持每个元素都不动,也就是恒等变换,记作E,即TT-1=T-1T=E。