主页 > 百家 > 正文

移动访问

真子集和子集的区别举例说明

真子集与子集的区别如下:1、子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。记作:A?B(或B?A).

真子集和子集的区别举例说明

2、真子集是对于子集来说的,真子集定义:如果集合A?B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集。也就是说如果集合A的所有元素同时都是集合B的元素,则称A是B的子集,若B中有一个元素,而A中没有,且A是B的子集,则称A是B的真子集,

注:①空集是所有集合的子集;②所有集合都是其本身的子集;③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}?{1,2,3,4}{1,2,3,4}?{1,2,3,4}

3、真子集和子集的区别:子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};

另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-1.但空集属特殊情况,它只有一个子集,没有真子集.