一次方程的求根公式为:x=[-b±(b2-4ac)]/2a,一元二次的标准形式为:ax2+bx+c=0a≠0)。只含有未知数(一,并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程成立必须同时满足三个条件:1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。2、只含有一个未知数。3、未知数项的最高次数是2。
一元二次方程的求式当Δ=b24ac≥0时,x=[-b±(b^2-4ac)^(1/2/2a。当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a。一元二次方程根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:Δ=b^2-4ac,应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
一元二次方程的根公式是由配方法推导来的:1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,2、移项得x^2+bx/a=-c/a,方程两专边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,4、开根属后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。